DETROIT WATER TEMPERATURE CONTROL AND DOWNSTREAM PASSAGE – FSS 95% DDR

Jeff Ament, Project Manager Kristy Fortuny, Technical Lead Jon Rerecich, Fish Biologist Steve Schlenker, Hydraulic Engineer

USACE Portland District Detroit PDT WFFDWG Meeting 7 May 2019

AGENDA

FSS 95% DDR - Plans and Sections

Screen Channel Hydraulics

CFD Results – FSS Entrance

CFD Results – Outflow

FHF Layout

Fish Offloading

Bypass Gates

FSS AND SWS ISOMETRIC

Portland District

FSS PLAN VIEW

J.S.ARI

orps

FSS GENERAL ARRANGEMENT – LOWER FLAT

U.S.ARMY

FSS – DEWATERING SCREEN ELEVATION

U.S.ARMY

FSS SCREEN SYSTEM OPERATIONAL SCENARIOS (OS)

-OS-1: Entrance weirs operate to maintain ~ 2 foot differential to provide entrance capture velocity
Channel velocities do not reach capture velocity in secondary screens at medium to lower FSS flow rates.
Plenum gates fully open (minimum differential between primary and secondary plenums)

-OS-2: Entrance weir fully lowered

- Channel velocities reach capture velocity in secondary screens at all FSS flow rates.
- Plenum gates throttled (maximum differential between primary and secondary plenums)

-OS-3: Entrance weirs operate to maintain ~ 2 foot differential to provide entrance capture velocity

- Channel velocities reach capture velocity in secondary screens at all FSS flow rates.
- Plenum gates throttled (maximum differential between primary and secondary plenums)

SCREEN CHANNEL HYDRAULIC PROFILE

Detroit FSS 95% Design Hydraulic Profile through System													
OS-1 (FSS Weir up, Capture Velocity at Entr. Weir, Plenum Gates Full Open)													
		Number	Trashrack	ack FSS wier Exp. Cha. Primary screens Secondary screens		Screen Approach							
	FFS	of OP	Velocity	subm	Velocity	Velocity	Velocitie	es (ft/s)	Velocities (ft/s)			Velocities (ft/s)	
	Flow	Barrels	(ft/s)	(ft)	(ft/s)	(ft/s)	U/s End	D/S End	U/s End	Acc Cha.	D/S End	Primary	Secondary
Max Criteria	4500	2	2.7	22.1	8.9	4.2	4.6	4.9	5.4	7.2	2.6	0.40	0.35
Max Q	5600	2	3.3	26.8	9.0	5.3	5.7	6.0	6.6	8.9	2.5	0.50	0.44
Min Q	1000	1	1.2	10.8	8.5	1.9	2.0	2.3	2.5	3.4	2.7	0.18	0.16

OS-2 (FSS Weir Down, Capture Vel D/S in Secondary Screens, Plenum gates Throttled)

		Number	Trashrack	FSS	wier	Exp. Cha.	Primary screens		Secondary screens				Screen A	pproach	
	FFS	of OP	Velocity	subm	Velocity	Velocity	Velocities (ft/s)		Velocities (ft/s)				Velocities (ft/s)		
	Flow	Barrels	(ft/s)	(ft)	(ft/s)	(ft/s)	U/s End	D/S End	U/s End	Acc Cha.	D/S End		Primary	Secondary	
Max Criteria	4500	2	2.7	22.1	7.1	4.1	4.5	5.6	6.1	8.2	2.1		0.37	0.39	
Max Q	5600	2	3.3	26.8	9.0	5.3	5.7	6.0	6.6	8.8	2.5		0.50	0.44	
Min Q	1000	1	1.2	10.8	3.1	1.8	1.9	5.4	5.9	7.9	1.8		0.15	0.37	

OS-3 (FSS weir up, Capture Vel at Entr weir & in Sec. Screens, Plenum gates Throttled)

		Number	Trashrack	FSS	wier	Exp. Cha.	Primary screens		Secondary screens				Screen A	Screen Approach	
	FFS	of OP	Velocity	subm	Velocity	Velocity	Velocities (ft/s)		Velocities (ft/s)				Velocities (ft/s)		
	Flow	Barrels	(ft/s)	(ft)	(ft/s)	(ft/s)	U/s End	D/S End	U/s End	Acc Cha.	D/S End		Primary	Seconda	
Max Criteria	4500	2	2.7	22.1	8.9	4.2	4.2	5.5	6.0	8.0	2.6		0.39	0.4	
Max Q	5600	2	3.3	26.8	9.0	5.3	5.7	6.0	6.6	8.8	2.5		0.50	0.4	
Min Q	1000	1	1.2	10.8	8.5	1.8	1.8	5.4	5.2	7.6	2.9		0.15	0.3	

US Army Corps of Engineers ® Portland District

HYDRAULIC PROFILE CHART: 4500 & 1000 CFS, OS-1 & OS-1

9

US Army Corps of Engineers ® Portland District

POTENTIAL SCREEN DOWNSIZING

R2 Technical Memorandum

- Increased approach velocity Primary screens only.
- Overall 20-ft reduction in length of FSS.
- Operating flows (max, design, min) Sweep velocity 7X greater than approach.
- 54-ft long primary channel length = Rapid passage and short exposure.
- Max approach 0.4 fps or less at 3500 cfs operating flow.
- FSS operating flows vary and would rarely be at extreme high flow conditions of 0.8 fps.

Potential geotech issues with the north corner of the FHF – reduced excavation

Cost, constructability, and operational benefits.

R2 Resource Consultants, Inc. (1997) - Review of Screening Criteria and High Flow Dewatering Literature Search.

CFD MODELING AT ENTRANCE - PLAN

Outlet Flowrate: 4381.78 (ft^3/s) Velocity Plane 10ft Below Reservoir Elevation

US Army Corps of Engineers ® Portland District

CFD MODELING AT ENTRANCE - ELEVATION

FSS ENTRANCE CONFIGURATION - ELEVATION

Portland District

U.S.ARM

FSS ENTRANCE WEIR SETTINGS

Table 4-2 - Entrance Weir Settings for a Range of FSS Flow Rates

FSS Flow	Number of Operating Channels	Weir Crest Submergence (ft below reservoir)
5600	2	26.8
5000	2	24.3
4500	2	22.1
4000	2	19.9
3500	2	17.7
3000	2	15.4
2500	2	13.1
2000	1	19.9
1500	1	15.4
1000	1	10.8

US Army Corps of Engineers ® Portland District

CFD MODELING – OUTFLOW

Figure 4-5 - Near-Field Model Geometric Features

Portland District

NEAR FIELD CFD MODEL SURFACE MESH

US Army Corps of Engineers ® Portland District

CFD VERTICAL AND HORIZONTAL PLANAR SLICES

CFD MODELING – OUTFLOW WITHOUT PUMPS

Figure 4-6 - Gravity Flow (Non-Pumped) Near-Field Model Results Overview (Plan)

CFD MODELING – OUTFLOW WITHOUT PUMPS (CONT.)

CFD Modeling Report - April 2019

US Army Corps of Engineers ® Portland District

19

GENERAL PLAN VIEW OF PROPOSED NET ALIGNMENT

PUMP ARRANGEMENT

Figure 6-2 - Plan (left), isometric (top right), and oblique (bottom right) layout of Optional Attraction Flow Pumping Arrangement

Portland District

PUMP DIFFUSION

VANE DIRECTIONS TESTED (ENCIRCLED INVESTIGATED FURTHER)

CFD MODELING – OUTFLOW WITH PUMPS

US Army Corps of Engineers ®

Portland District

are 27 fran fren oon bepar felolig oonloard for fampea fano

CFD MODELING – OUTFLOW WITH PUMPS (CONT.)

Figure 28 Section Views of Velocity and Temperature for Pump Run 5

FISH HANDLING FACILITY LAYOUT

Portland District

BYPASS GATES

Figure 6-17 – Bypass Gate Hoist, Overhead Structure and Gates 28

Questions?

Portland District

